\(\int \frac {(-a+b x)^{5/2}}{x^3} \, dx\) [333]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 86 \[ \int \frac {(-a+b x)^{5/2}}{x^3} \, dx=\frac {15}{4} b^2 \sqrt {-a+b x}-\frac {5 b (-a+b x)^{3/2}}{4 x}-\frac {(-a+b x)^{5/2}}{2 x^2}-\frac {15}{4} \sqrt {a} b^2 \arctan \left (\frac {\sqrt {-a+b x}}{\sqrt {a}}\right ) \]

[Out]

-5/4*b*(b*x-a)^(3/2)/x-1/2*(b*x-a)^(5/2)/x^2-15/4*b^2*arctan((b*x-a)^(1/2)/a^(1/2))*a^(1/2)+15/4*b^2*(b*x-a)^(
1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {43, 52, 65, 211} \[ \int \frac {(-a+b x)^{5/2}}{x^3} \, dx=-\frac {15}{4} \sqrt {a} b^2 \arctan \left (\frac {\sqrt {b x-a}}{\sqrt {a}}\right )+\frac {15}{4} b^2 \sqrt {b x-a}-\frac {(b x-a)^{5/2}}{2 x^2}-\frac {5 b (b x-a)^{3/2}}{4 x} \]

[In]

Int[(-a + b*x)^(5/2)/x^3,x]

[Out]

(15*b^2*Sqrt[-a + b*x])/4 - (5*b*(-a + b*x)^(3/2))/(4*x) - (-a + b*x)^(5/2)/(2*x^2) - (15*Sqrt[a]*b^2*ArcTan[S
qrt[-a + b*x]/Sqrt[a]])/4

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps \begin{align*} \text {integral}& = -\frac {(-a+b x)^{5/2}}{2 x^2}+\frac {1}{4} (5 b) \int \frac {(-a+b x)^{3/2}}{x^2} \, dx \\ & = -\frac {5 b (-a+b x)^{3/2}}{4 x}-\frac {(-a+b x)^{5/2}}{2 x^2}+\frac {1}{8} \left (15 b^2\right ) \int \frac {\sqrt {-a+b x}}{x} \, dx \\ & = \frac {15}{4} b^2 \sqrt {-a+b x}-\frac {5 b (-a+b x)^{3/2}}{4 x}-\frac {(-a+b x)^{5/2}}{2 x^2}-\frac {1}{8} \left (15 a b^2\right ) \int \frac {1}{x \sqrt {-a+b x}} \, dx \\ & = \frac {15}{4} b^2 \sqrt {-a+b x}-\frac {5 b (-a+b x)^{3/2}}{4 x}-\frac {(-a+b x)^{5/2}}{2 x^2}-\frac {1}{4} (15 a b) \text {Subst}\left (\int \frac {1}{\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {-a+b x}\right ) \\ & = \frac {15}{4} b^2 \sqrt {-a+b x}-\frac {5 b (-a+b x)^{3/2}}{4 x}-\frac {(-a+b x)^{5/2}}{2 x^2}-\frac {15}{4} \sqrt {a} b^2 \tan ^{-1}\left (\frac {\sqrt {-a+b x}}{\sqrt {a}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.78 \[ \int \frac {(-a+b x)^{5/2}}{x^3} \, dx=\frac {1}{4} \left (\frac {\sqrt {-a+b x} \left (-2 a^2+9 a b x+8 b^2 x^2\right )}{x^2}-15 \sqrt {a} b^2 \arctan \left (\frac {\sqrt {-a+b x}}{\sqrt {a}}\right )\right ) \]

[In]

Integrate[(-a + b*x)^(5/2)/x^3,x]

[Out]

((Sqrt[-a + b*x]*(-2*a^2 + 9*a*b*x + 8*b^2*x^2))/x^2 - 15*Sqrt[a]*b^2*ArcTan[Sqrt[-a + b*x]/Sqrt[a]])/4

Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.72

method result size
pseudoelliptic \(\frac {-15 b^{2} \arctan \left (\frac {\sqrt {b x -a}}{\sqrt {a}}\right ) \sqrt {a}\, x^{2}-\left (-8 b^{2} x^{2}-9 a b x +2 a^{2}\right ) \sqrt {b x -a}}{4 x^{2}}\) \(62\)
risch \(\frac {a \left (-b x +a \right ) \left (-9 b x +2 a \right )}{4 x^{2} \sqrt {b x -a}}-\frac {15 b^{2} \arctan \left (\frac {\sqrt {b x -a}}{\sqrt {a}}\right ) \sqrt {a}}{4}+2 b^{2} \sqrt {b x -a}\) \(67\)
derivativedivides \(2 b^{2} \left (\sqrt {b x -a}-a \left (\frac {-\frac {9 \left (b x -a \right )^{\frac {3}{2}}}{8}-\frac {7 a \sqrt {b x -a}}{8}}{b^{2} x^{2}}+\frac {15 \arctan \left (\frac {\sqrt {b x -a}}{\sqrt {a}}\right )}{8 \sqrt {a}}\right )\right )\) \(70\)
default \(2 b^{2} \left (\sqrt {b x -a}-a \left (\frac {-\frac {9 \left (b x -a \right )^{\frac {3}{2}}}{8}-\frac {7 a \sqrt {b x -a}}{8}}{b^{2} x^{2}}+\frac {15 \arctan \left (\frac {\sqrt {b x -a}}{\sqrt {a}}\right )}{8 \sqrt {a}}\right )\right )\) \(70\)

[In]

int((b*x-a)^(5/2)/x^3,x,method=_RETURNVERBOSE)

[Out]

1/4*(-15*b^2*arctan((b*x-a)^(1/2)/a^(1/2))*a^(1/2)*x^2-(-8*b^2*x^2-9*a*b*x+2*a^2)*(b*x-a)^(1/2))/x^2

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.62 \[ \int \frac {(-a+b x)^{5/2}}{x^3} \, dx=\left [\frac {15 \, \sqrt {-a} b^{2} x^{2} \log \left (\frac {b x - 2 \, \sqrt {b x - a} \sqrt {-a} - 2 \, a}{x}\right ) + 2 \, {\left (8 \, b^{2} x^{2} + 9 \, a b x - 2 \, a^{2}\right )} \sqrt {b x - a}}{8 \, x^{2}}, -\frac {15 \, \sqrt {a} b^{2} x^{2} \arctan \left (\frac {\sqrt {b x - a}}{\sqrt {a}}\right ) - {\left (8 \, b^{2} x^{2} + 9 \, a b x - 2 \, a^{2}\right )} \sqrt {b x - a}}{4 \, x^{2}}\right ] \]

[In]

integrate((b*x-a)^(5/2)/x^3,x, algorithm="fricas")

[Out]

[1/8*(15*sqrt(-a)*b^2*x^2*log((b*x - 2*sqrt(b*x - a)*sqrt(-a) - 2*a)/x) + 2*(8*b^2*x^2 + 9*a*b*x - 2*a^2)*sqrt
(b*x - a))/x^2, -1/4*(15*sqrt(a)*b^2*x^2*arctan(sqrt(b*x - a)/sqrt(a)) - (8*b^2*x^2 + 9*a*b*x - 2*a^2)*sqrt(b*
x - a))/x^2]

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.62 (sec) , antiderivative size = 267, normalized size of antiderivative = 3.10 \[ \int \frac {(-a+b x)^{5/2}}{x^3} \, dx=\begin {cases} - \frac {15 i \sqrt {a} b^{2} \operatorname {acosh}{\left (\frac {\sqrt {a}}{\sqrt {b} \sqrt {x}} \right )}}{4} - \frac {i a^{3}}{2 \sqrt {b} x^{\frac {5}{2}} \sqrt {\frac {a}{b x} - 1}} + \frac {11 i a^{2} \sqrt {b}}{4 x^{\frac {3}{2}} \sqrt {\frac {a}{b x} - 1}} - \frac {i a b^{\frac {3}{2}}}{4 \sqrt {x} \sqrt {\frac {a}{b x} - 1}} - \frac {2 i b^{\frac {5}{2}} \sqrt {x}}{\sqrt {\frac {a}{b x} - 1}} & \text {for}\: \left |{\frac {a}{b x}}\right | > 1 \\\frac {15 \sqrt {a} b^{2} \operatorname {asin}{\left (\frac {\sqrt {a}}{\sqrt {b} \sqrt {x}} \right )}}{4} + \frac {a^{3}}{2 \sqrt {b} x^{\frac {5}{2}} \sqrt {- \frac {a}{b x} + 1}} - \frac {11 a^{2} \sqrt {b}}{4 x^{\frac {3}{2}} \sqrt {- \frac {a}{b x} + 1}} + \frac {a b^{\frac {3}{2}}}{4 \sqrt {x} \sqrt {- \frac {a}{b x} + 1}} + \frac {2 b^{\frac {5}{2}} \sqrt {x}}{\sqrt {- \frac {a}{b x} + 1}} & \text {otherwise} \end {cases} \]

[In]

integrate((b*x-a)**(5/2)/x**3,x)

[Out]

Piecewise((-15*I*sqrt(a)*b**2*acosh(sqrt(a)/(sqrt(b)*sqrt(x)))/4 - I*a**3/(2*sqrt(b)*x**(5/2)*sqrt(a/(b*x) - 1
)) + 11*I*a**2*sqrt(b)/(4*x**(3/2)*sqrt(a/(b*x) - 1)) - I*a*b**(3/2)/(4*sqrt(x)*sqrt(a/(b*x) - 1)) - 2*I*b**(5
/2)*sqrt(x)/sqrt(a/(b*x) - 1), Abs(a/(b*x)) > 1), (15*sqrt(a)*b**2*asin(sqrt(a)/(sqrt(b)*sqrt(x)))/4 + a**3/(2
*sqrt(b)*x**(5/2)*sqrt(-a/(b*x) + 1)) - 11*a**2*sqrt(b)/(4*x**(3/2)*sqrt(-a/(b*x) + 1)) + a*b**(3/2)/(4*sqrt(x
)*sqrt(-a/(b*x) + 1)) + 2*b**(5/2)*sqrt(x)/sqrt(-a/(b*x) + 1), True))

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.13 \[ \int \frac {(-a+b x)^{5/2}}{x^3} \, dx=-\frac {15}{4} \, \sqrt {a} b^{2} \arctan \left (\frac {\sqrt {b x - a}}{\sqrt {a}}\right ) + 2 \, \sqrt {b x - a} b^{2} + \frac {9 \, {\left (b x - a\right )}^{\frac {3}{2}} a b^{2} + 7 \, \sqrt {b x - a} a^{2} b^{2}}{4 \, {\left ({\left (b x - a\right )}^{2} + 2 \, {\left (b x - a\right )} a + a^{2}\right )}} \]

[In]

integrate((b*x-a)^(5/2)/x^3,x, algorithm="maxima")

[Out]

-15/4*sqrt(a)*b^2*arctan(sqrt(b*x - a)/sqrt(a)) + 2*sqrt(b*x - a)*b^2 + 1/4*(9*(b*x - a)^(3/2)*a*b^2 + 7*sqrt(
b*x - a)*a^2*b^2)/((b*x - a)^2 + 2*(b*x - a)*a + a^2)

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.97 \[ \int \frac {(-a+b x)^{5/2}}{x^3} \, dx=-\frac {15 \, \sqrt {a} b^{3} \arctan \left (\frac {\sqrt {b x - a}}{\sqrt {a}}\right ) - 8 \, \sqrt {b x - a} b^{3} - \frac {9 \, {\left (b x - a\right )}^{\frac {3}{2}} a b^{3} + 7 \, \sqrt {b x - a} a^{2} b^{3}}{b^{2} x^{2}}}{4 \, b} \]

[In]

integrate((b*x-a)^(5/2)/x^3,x, algorithm="giac")

[Out]

-1/4*(15*sqrt(a)*b^3*arctan(sqrt(b*x - a)/sqrt(a)) - 8*sqrt(b*x - a)*b^3 - (9*(b*x - a)^(3/2)*a*b^3 + 7*sqrt(b
*x - a)*a^2*b^3)/(b^2*x^2))/b

Mupad [B] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.80 \[ \int \frac {(-a+b x)^{5/2}}{x^3} \, dx=2\,b^2\,\sqrt {b\,x-a}-\frac {15\,\sqrt {a}\,b^2\,\mathrm {atan}\left (\frac {\sqrt {b\,x-a}}{\sqrt {a}}\right )}{4}+\frac {9\,a\,{\left (b\,x-a\right )}^{3/2}}{4\,x^2}+\frac {7\,a^2\,\sqrt {b\,x-a}}{4\,x^2} \]

[In]

int((b*x - a)^(5/2)/x^3,x)

[Out]

2*b^2*(b*x - a)^(1/2) - (15*a^(1/2)*b^2*atan((b*x - a)^(1/2)/a^(1/2)))/4 + (9*a*(b*x - a)^(3/2))/(4*x^2) + (7*
a^2*(b*x - a)^(1/2))/(4*x^2)